

#### LA-UR-21-21679

Approved for public release; distribution is unlimited.

Title: Proliferation Monitoring with Hidden Markov Models

Author(s): Hollis, Andrew

Tompkins, George Wilson, Alyson Smith, Ralph

Intended for: Next-Gen AI for Proliferation Detection: Domain Aware Methods (Virtual

Workshop)

Issued: 2021-02-22



# Proliferation Monitoring with Hidden Markov Models



Andrew Hollis, George Tompkins, Alyson Wilson, and Ralph Smith

January, 2021



#### **Proliferation Monitoring**

- Non-proliferation goal: monitor manufacturing and testing processes that might present a proliferation risk.
- Problem: data collected from monitoring systems does not yield direct knowledge of the activity underway.



#### **Proliferation Monitoring Challenges**

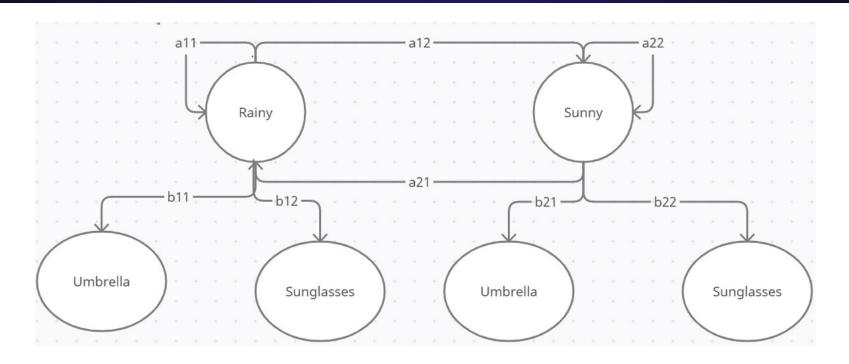
- Goal: develop a statistical model that combines
  - data observed from the process
  - domain knowledge about the process
- This model should describe
  - process of interest (unobserved)
  - process data (observed)
  - relationship between the process and the data







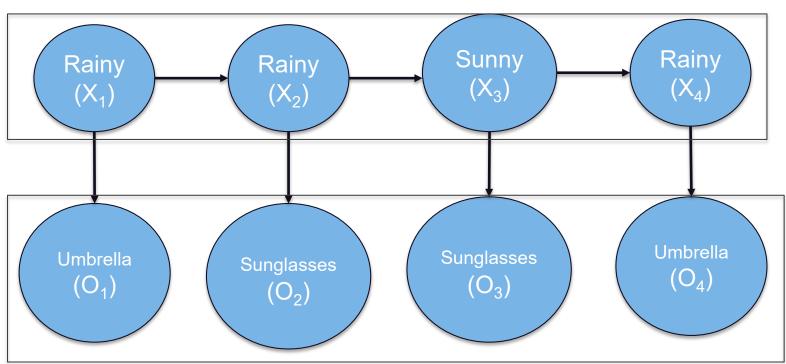
# Simple HMM Example



Simple Weather HMM

#### **HMM Data Stream**

#### **Unobserved Process**



Observation Sequence

#### **HMM Parameters**

• Initial State Probabilities:  $\pi = (\pi_1, ..., \pi_N), \pi_i = P(X_1 = i)$ 

• Observation Probabilities: 
$$B = \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \ddots & \vdots \\ b_{N1} & \cdots & b_{Np} \end{pmatrix}$$
,  $b_{ij} = P(O_t = j | X_t = i)$ ,  $i = 1, \dots, N, j = 1, \dots, p$ , and  $t = 1, \dots, n$ .

• Transition Probabilities: 
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix}$$
,  $a_{ij} = P(X_t = j | X_{t-1} = i)$ ,  $i, j = 1, \dots, N$ , and  $t = 1, \dots, n$ .

#### **HMM** Inference

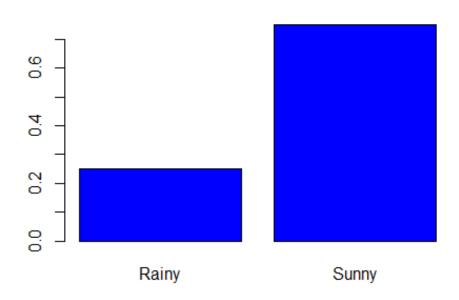
The HMM can be used to compute

$$\gamma_t(i) = P(X_t = i | \boldsymbol{0}, \boldsymbol{\lambda}),$$

where  $\lambda = (A, B, \pi)$  and  $\mathbf{0} = (O_1, ..., O_n)$ .

• Takeaway: Infer most likely activity at any given time.

#### State Distribution at t=3



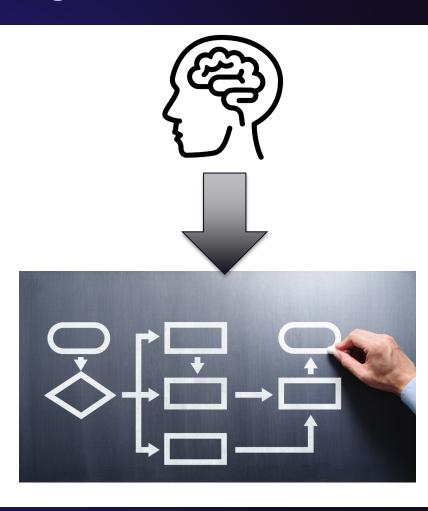
## Dry Alluvium Geology (DAG) Test Case Study

- Case study: Dry Alluvium Geology (DAG) test, an explosive test that was conducted at the Nevada National Security Site.
- Observation data: equipment (cranes, forklifts, etc.) in use at several evenly spaced time points.

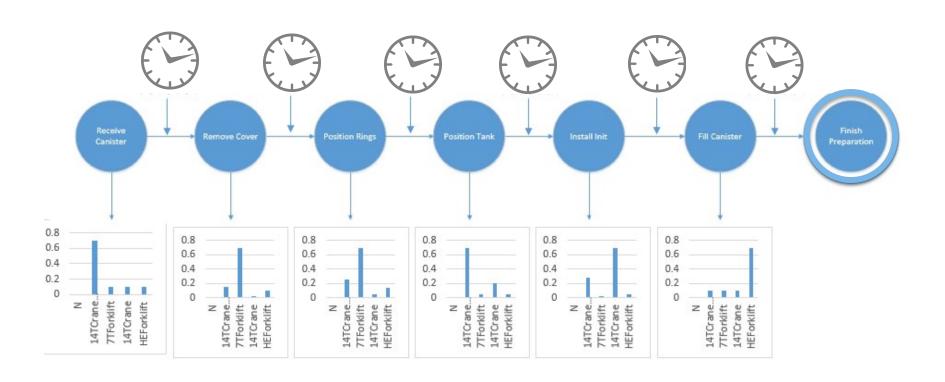


#### **Domain Awareness: Parameterizing DAG HMM**

- How do we incorporate expert knowledge to make our model domain aware?
- Discrete even simulator:
  - a process model built by experts
  - used to simulate DAG process runs
  - use runs to estimate observation probabilities and average activity completion times
  - transition probabilities can be derived from the average activity completion times



## DAG HMM, cont.

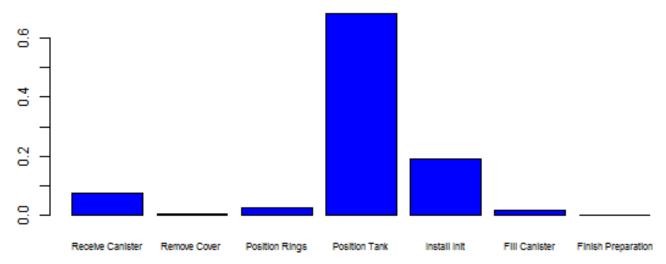


Los Alamos National Laboratory 2/8/2021

10

#### **Determining the Most Likely Current Activity**

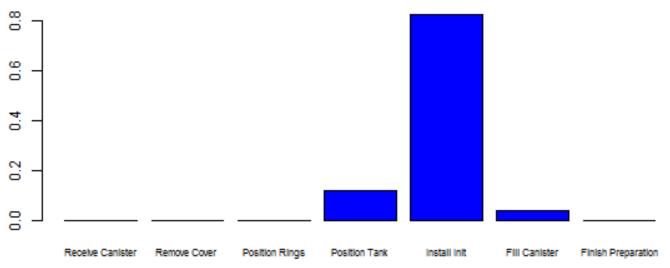
Initial observation sequence: (14T Crane/Old Glory, 7T Forklift, 7T Forklift, 14T Crane/Old Glory, 14T Crane/Old Glory)



Distribution over process activities after the final observation

## **Determining the Most Likely Current Activity (Cont.)**

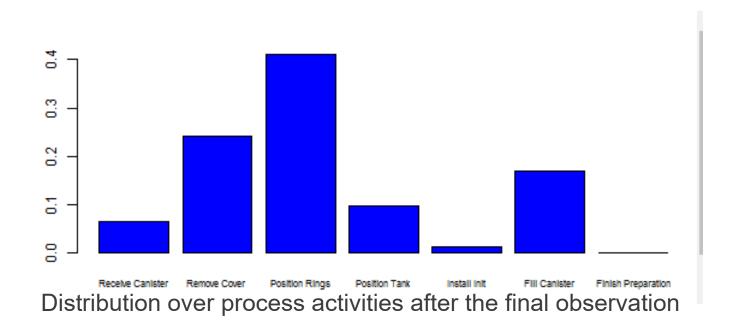
Replace last two observations with 14T Crane, which is indicative of the "install initiator" activity. Observation Sequence: (14T Crane/Old Glory, 7T Forklift, 7T Forklift, 14T Crane, 14T Crane)



Distribution over process activities after the final observation

## **Determining the Most Likely Current Activity (Cont.)**

Longer observation sequence with more uncertainty: (14T Crane/Old Glory, 7T Forklift, 7T Forklift, 14T Crane/Old Glory, 14T Crane/Old Glory, 14T Crane/Old Glory, 7T Forklift, 7T Forklift)



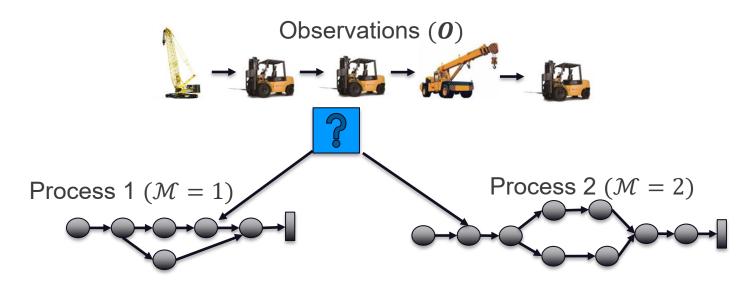
#### Other HMM capabilities

#### The HMM can also

- determine the most likely sequence of activities corresponding to a sequence of observations
- predict when the process started and when the process will end
- use observed data to update model parameters and quantify parameter uncertainty

#### **Next Steps**

Next step: Determine what process from a set of processes most likely generated the observed data.



We compute  $P(\mathcal{M} = 1 | \mathbf{0})$  and  $P(\mathcal{M} = 2 | \mathbf{0})$  and compare.

# Thank you for your attention!

Los Alamos National Laboratory 2/8/2021

16